Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 156
1.
J Ethnopharmacol ; 323: 117700, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38176666

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (TC) a potential medicinal herb, has been ethnobotanically used as an eco-friendly supplement to manage various diseases, including cerebral fever. Earlier studies have shown that TC exhibits diverse beneficial effects, including hepatoprotective and neuroprotective effects. However, the effects of TC remain unexplored in animal models of encephalopathy including hepatic encephalopathy (HE). AIM OF THE STUDY: To evaluate the effects of TC stem extract against thioacetamide (TAA)-induced behavioural and molecular alterations in HE rats. METHODS AND MATERIALS: The extract was preliminarily screened through phytochemical and HR-LC/MS analysis. Animals were pre-treated with TC extract at doses 30 and 100 mg/kg, orally. Following 7 days of TC pre-treatment, HE was induced by administering TAA (300 mg/kg, i. p. thrice). Behavioural assessments were performed after 56 h of TAA first dose. The animals were then sacrificed to assess biochemical parameters in serum, liver and brain. Liver tissue was used for immunoblotting and histological studies to evaluate inflammatory and fibrotic signalling. Moreover, brain tissue was used to evaluate brain edema, activation of glial cells (GFAP, IBA-1) and NF-κB/NLRP3 downstream signalling via immunoblotting and immunohistochemical analysis in cortex and hippocampus. RESULTS: The pre-treatment with TC extract effective mitigated TAA-induced behavioural alterations, lowered serum LFT (AST, ALT, ALP, bilirubin) and oxidative stress markers in liver and brain. TC treatment significantly modulated hyperammonemia, cerebral edema and preserved the integrity of BBB proteins in HE animals. TC treatment attenuated TAA-induced histological changes, tissue inflammation (pNF-κB (p65), TNF-α, NLRP3) and fibrosis (collagen, α-SMA) in liver. In addition, immunoblotting analysis revealed TC pre-treatment inhibited fibrotic proteins such as vimentin, TGF-ß1 and pSmad2/3 in the liver. Our study further showed that TC treatment downregulated the expression of MAPK/NF-κB inflammatory signalling, as well as GFAP and IBA-1 (glial cell markers) in cortex and hippocampus of TAA-intoxicated rats. Additionally, TC-treated animals exhibited reduced expression of caspase3/9 and BAX induced by TAA. CONCLUSION: This study revealed promising insights on the protective effects of TC against HE. The findings clearly demonstrated that the significant inhibition of MAPK/NF-κB signalling and glial cell activation could be responsible for the observed beneficial effects of TC in TAA-induced HE rats.


Hepatic Encephalopathy , Hyperammonemia , Tinospora , Rats , Animals , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/prevention & control , Thioacetamide/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Hyperammonemia/metabolism , Hyperammonemia/pathology , Liver , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
2.
Metabolism ; 151: 155740, 2024 Feb.
Article En | MEDLINE | ID: mdl-37995805

BACKGROUND & AIMS: Dysbiosis contributes to alcohol-associated liver disease (ALD); however, the precise mechanisms remain elusive. Given the critical role of the gut microbiota in ammonia production, we herein aim to investigate whether and how gut-derived ammonia contributes to ALD. METHODS: Blood samples were collected from human subjects with/without alcohol drinking. Mice were exposed to the Lieber-DeCarli isocaloric control or ethanol-containing diets with and without rifaximin (a nonabsorbable antibiotic clinically used for lowering gut ammonia production) supplementation for five weeks. Both in vitro (NH4Cl exposure of AML12 hepatocytes) and in vivo (urease administration for 5 days in mice) hyperammonemia models were employed. RNA sequencing and fecal amplicon sequencing were performed. Ammonia and triglyceride concentrations were measured. The gene and protein expression of enzymes involved in multiple pathways were measured. RESULTS: Chronic alcohol consumption causes hyperammonemia in both mice and human subjects. In healthy livers and hepatocytes, ammonia exposure upregulates the expression of urea cycle genes, elevates hepatic de novo lipogenesis (DNL), and increases fat accumulation. Intriguingly, ammonia promotes ethanol catabolism and acetyl-CoA formation, which, together with ammonia, synergistically facilitates intracellular fat accumulation in hepatocytes. Mechanistic investigations uncovered that ATF4 activation, as a result of ER stress induction and general control nonderepressible 2 activation, plays a central role in ammonia-provoked DNL elevation. Rifaximin ameliorates ALD pathologies in mice, concomitant with blunted hepatic ER stress induction, ATF4 activation, and DNL activation. CONCLUSIONS: An overproduction of ammonia by gut microbiota, synergistically interacting with ethanol, is a significant contributor to ALD pathologies.


Ammonia , Fatty Liver , Hyperammonemia , Liver Diseases, Alcoholic , Animals , Humans , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Ammonia/adverse effects , Ammonia/metabolism , Ethanol/adverse effects , Ethanol/metabolism , Fatty Liver/chemically induced , Fatty Liver/metabolism , Hyperammonemia/complications , Hyperammonemia/metabolism , Hyperammonemia/pathology , Lipogenesis , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Mice, Inbred C57BL , Rifaximin/pharmacology
3.
Cell Mol Life Sci ; 80(4): 90, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36922433

Patients with liver cirrhosis show hyperammonemia and peripheral inflammation and may show hepatic encephalopathy with cognitive impairment, reproduced by rats with chronic hyperammonemia. Peripheral inflammation induces neuroinflammation in hippocampus of hyperammonemic rats, altering neurotransmission and leading to cognitive impairment. Extracellular vesicles (EVs) may transmit pathological effects from the periphery to the brain. We hypothesized that EVs from peripheral blood would contribute to cognitive alterations in hyperammonemic rats. The aims were to assess whether EVs from plasma of hyperammonemic rats (HA-EVs) induce cognitive impairment and to identify the underlying mechanisms. Injection of HA-EVs impaired learning and memory, induced microglia and astrocytes activation and increased TNFα and IL-1ß. Ex vivo incubation of hippocampal slices from control rats with HA-EVs reproduced these alterations. HA-EVs increased membrane expression of TNFR1, reduced membrane expression of TGFßR2 and Smad7 and IκBα levels and increased IκBα phosphorylation. This led to increased activation of NF-κB and IL-1ß production, altering membrane expression of NR2B, GluA1 and GluA2 subunits, which would be responsible for cognitive impairment. All these effects of HA-EVs were prevented by blocking TNFα, indicating that they were mediated by enhanced activation of TNFR1 by TNFα. We show that these mechanisms are very different from those leading to motor incoordination, which is due to altered GABAergic neurotransmission in cerebellum. This demonstrates that peripheral EVs play a key role in the transmission of peripheral alterations to the brain in hyperammonemia and hepatic encephalopathy, inducing neuroinflammation and altering neurotransmission in hippocampus, which in turn is responsible for the cognitive deficits.


Extracellular Vesicles , Hepatic Encephalopathy , Hyperammonemia , Rats , Animals , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/pharmacology , Neuroinflammatory Diseases , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/pharmacology , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/pathology , Hyperammonemia/metabolism , Hyperammonemia/pathology , Inflammation/metabolism , Cognition , Extracellular Vesicles/metabolism , Hippocampus/metabolism
4.
Front Immunol ; 13: 921947, 2022.
Article En | MEDLINE | ID: mdl-35911759

Hyperammonemia plays a main role in the neurological impairment in cirrhotic patients with hepatic encephalopathy. Rats with chronic hyperammonemia reproduce the motor incoordination of patients with minimal hepatic encephalopathy, which is due to enhanced GABAergic neurotransmission in cerebellum as a consequence of neuroinflammation. Extracellular vesicles (EVs) could play a key role in the transmission of peripheral alterations to the brain to induce neuroinflammation and neurological impairment in hyperammonemia and hepatic encephalopathy. EVs from plasma of hyperammonemic rats (HA-EVs) injected to normal rats induce neuroinflammation and motor incoordination, but the underlying mechanisms remain unclear. The aim of this work was to advance in the understanding of these mechanisms. To do this we used an ex vivo system. Cerebellar slices from normal rats were treated ex vivo with HA-EVs. The aims were: 1) assess if HA-EVs induce microglia and astrocytes activation and neuroinflammation in cerebellar slices of normal rats, 2) assess if this is associated with activation of the TNFR1-NF-kB-glutaminase-GAT3 pathway, 3) assess if the TNFR1-CCL2-BDNF-TrkB pathway is activated by HA-EVs and 4) assess if the increased TNFα levels in HA-EVs are responsible for the above effects and if they are prevented by blocking the action of TNFα. Our results show that ex vivo treatment of cerebellar slices from control rats with extracellular vesicles from hyperammonemic rats induce glial activation, neuroinflammation and enhance GABAergic neurotransmission, reproducing the effects induced by hyperammonemia in vivo. Moreover, we identify in detail key underlying mechanisms. HA-EVs induce the activation of both the TNFR1-CCL2-BDNF-TrkB-KCC2 pathway and the TNFR1-NF-kB-glutaminase-GAT3 pathway. Activation of these pathways enhances GABAergic neurotransmission in cerebellum, which is responsible for the induction of motor incoordination by HA-EVs. The data also show that the increased levels of TNFα in HA-EVs are responsible for the above effects and that the activation of both pathways is prevented by blocking the action of TNFα. This opens new therapeutic options to improve motor incoordination in hyperammonemia and also in cirrhotic patients with hepatic encephalopathy and likely in other pathologies in which altered cargo of extracellular vesicles contribute to the propagation of the pathology.


Extracellular Vesicles , Hepatic Encephalopathy , Hyperammonemia , Animals , Ataxia/complications , Ataxia/metabolism , Ataxia/pathology , Brain-Derived Neurotrophic Factor/metabolism , Cerebellum/metabolism , Extracellular Vesicles/metabolism , Glutaminase/metabolism , Hepatic Encephalopathy/complications , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/pathology , Hyperammonemia/complications , Hyperammonemia/metabolism , Hyperammonemia/pathology , Liver Cirrhosis/pathology , NF-kappa B/metabolism , Neuroinflammatory Diseases , Rats , Rats, Wistar , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Metab Brain Dis ; 36(7): 2169-2172, 2021 10.
Article En | MEDLINE | ID: mdl-34427841

Biallelic pathogenic variants in the neuroblastoma amplified sequence (NBAS) gene were firstly (2015) identified as a cause of fever-triggered recurrent acute liver failure (RALF). Since then, some patients with NBAS deficiency presenting with neurologic features, including a motor delay, intellectual disability, muscular hypotonia and a mild brain atrophy, have been reported. Here, we describe a case of pediatric patient diagnosed with NBAS deficiency due to a homozygous c.2809C > G, p.(Pro937Ala) variant presenting with RALF with severe hyperammonemia, acquired microcephaly and progressive brain atrophy. Not reported in the literature findings include severe hyperammonemia during ALF episode, and neurologic features in the form of acquired progressive microcephaly with brain atrophy. The latter raises the hypothesis about a primary neurologic phenotype in NBAS deficiency.


Hyperammonemia , Liver Failure, Acute , Microcephaly , Neuroblastoma , Atrophy/genetics , Atrophy/pathology , Brain/metabolism , Child , Humans , Hyperammonemia/genetics , Hyperammonemia/pathology , Liver Failure, Acute/genetics , Liver Failure, Acute/pathology , Microcephaly/complications , Microcephaly/diagnostic imaging , Microcephaly/genetics , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
7.
Am J Med Genet A ; 185(10): 2976-2985, 2021 10.
Article En | MEDLINE | ID: mdl-34155781

Reduced muscle tone, muscle weakness, and physical fatigue can impact considerably on quality of life for children with neurofibromatosis type 1 (NF1). Human muscle biopsies and mouse models of NF1 deficiency in muscle show intramyocellular lipid accumulation, and preclinical data have indicated that L-carnitine supplementation can ameliorate this phenotype. The aim of this study is to examine whether daily L-carnitine supplementation is safe and feasible, and will improve muscle strength and reduce fatigue in children with NF1. A 12-week Phase 2a trial was conducted using 1000 mg daily oral levocarnitine tartrate supplementation. Recruited children were between 8 and 12 years old with a clinical diagnosis of NF1, history of muscle weakness and fatigue, and naïve to L-carnitine. Primary outcomes were safety (self-reporting, biochemical testing) and compliance. Secondary outcomes included plasma acylcarnitine profiles, functional measures (muscle strength, long jump, handwriting speed, 6-minute-walk test [6MWT]), and parent-reported questionnaires (PedsQL™, CBCL/6-18). Six children completed the trial with no self-reported adverse events. Biochemical tests for kidney and liver function were normal, and the average compliance was 95%. Plasma acylcarnitine levels were low, but within a range not clinically linked to carnitine deficiency. For strength measures, there was a mean 53% increase in dorsiflexion strength (95% confidence interval [CI] 8.89-60.75; p = 0.02) and mean 66% increase in plantarflexion strength (95% CI 12.99-134.1; p = 0.03). In terms of muscle performance, there was a mean 10% increase in long jump distance (95% CI 2.97-16.03; p = 0.01) and 6MWT distance (95% CI 5.88-75.45; p = 0.03). Comparison with the 1000 Norms Project data showed a significant improvement in Z-score for all of these measures. Parent reports showed no negative impact on quality of life, and the perceived benefits led to the majority of individuals remaining on L-carnitine after the study. Twelve weeks of L-carnitine supplementation is safe and feasible in children with NF1, and a Phase 3 trial should confirm the efficacy of treatment.


Carnitine/administration & dosage , Fatigue/diet therapy , Muscle Weakness/diet therapy , Neurofibromatosis 1/diet therapy , Cardiomyopathies/diet therapy , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Carnitine/adverse effects , Carnitine/deficiency , Carnitine/metabolism , Child , Dietary Supplements/adverse effects , Fatigue/genetics , Fatigue/pathology , Female , Humans , Hyperammonemia/diet therapy , Hyperammonemia/metabolism , Hyperammonemia/pathology , Male , Muscle Strength/drug effects , Muscle Weakness/metabolism , Muscle Weakness/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Muscular Diseases/diet therapy , Muscular Diseases/metabolism , Muscular Diseases/pathology , Neurofibromatosis 1/complications , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/pathology , Quality of Life
8.
Mol Genet Metab ; 133(2): 182-184, 2021 06.
Article En | MEDLINE | ID: mdl-34020866

Carnitine palmitoyl transferase II (CPT II) catalyzes the release of activated long-chain fatty acids from acylcarnitines into mitochondria for subsequent fatty acid oxidation. Depending on residual enzyme activity, deficiency of this enzyme leads to a spectrum of symptoms from early onset hypoglycemia, hyperammonemia, cardiomyopathy and death to onset of recurrent rhabdomyolysis in adolescents and young adults. We present a case of successful orthotopic heart transplantation in a patient with severe infantile onset cardiomyopathy due to CPT II deficiency identified through newborn screening. Excellent cardiac function is preserved 12 years post-transplantation; however, the patient has developed intermittent episodes of hyperammonemia and rhabdomyolysis later in childhood and early adolescence readily resolved with intravenous glucose. Successful heart transplant in this patient demonstrates the feasibility of this management option in patients with even severe forms of long chain fatty acid oxidation disorders.


Carnitine O-Palmitoyltransferase/deficiency , Carnitine O-Palmitoyltransferase/genetics , Heart Transplantation/methods , Heart/physiopathology , Metabolism, Inborn Errors/therapy , Adolescent , Adult , Age of Onset , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/therapy , Carnitine O-Palmitoyltransferase/metabolism , Fatty Acids/metabolism , Humans , Hyperammonemia/genetics , Hyperammonemia/pathology , Hyperammonemia/therapy , Hypoglycemia/genetics , Hypoglycemia/pathology , Hypoglycemia/therapy , Infant, Newborn , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/pathology , Neonatal Screening , Rhabdomyolysis/genetics , Rhabdomyolysis/pathology , Rhabdomyolysis/therapy , Young Adult
9.
Am J Med Genet A ; 185(7): 2026-2036, 2021 07.
Article En | MEDLINE | ID: mdl-33851512

Urea cycle disorders (UCDs) are inherited metabolic diseases that lead to hyperammonemia with variable clinical manifestations. Using data from a nationwide study, we investigated the onset time, gene variants, clinical manifestations, and treatment of patients with UCDs in Japan. Of the 229 patients with UCDs diagnosed and/or treated between January 2000 and March 2018, identified gene variants and clinical information were available for 102 patients, including 62 patients with ornithine transcarbamylase (OTC) deficiency, 18 patients with carbamoyl phosphate synthetase 1 (CPS1) deficiency, 16 patients with argininosuccinate synthetase (ASS) deficiency, and 6 patients with argininosuccinate lyase (ASL) deficiency. A total of 13, 10, 4, and 5 variants in the OTC, CPS1, ASS, and ASL genes were respectively identified as novel variants, which were neither registered in ClinVar databases nor previously reported. The onset time and severity in patients with UCD could be predicted based on the identified gene variants in each patient from this nationwide study and previous studies. This genetic information may help in predicting the long-term outcome and determining specific treatment strategies such as liver transplantation in patients with UCDs.


Argininosuccinate Lyase/genetics , Argininosuccinate Synthase/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Ornithine Carbamoyltransferase/genetics , Urea Cycle Disorders, Inborn/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Variation/genetics , Humans , Hyperammonemia/enzymology , Hyperammonemia/genetics , Hyperammonemia/pathology , Infant , Male , Metabolic Diseases/enzymology , Metabolic Diseases/genetics , Metabolic Diseases/pathology , Urea Cycle Disorders, Inborn/enzymology , Urea Cycle Disorders, Inborn/pathology , Young Adult
10.
Mol Genet Metab ; 133(2): 148-156, 2021 06.
Article En | MEDLINE | ID: mdl-33846069

BACKGROUND: Urea cycle disorders (UCDs) are among the most common inborn errors of liver metabolism. As therapies for hyperammonemia associated with urea cycle dysfunction have improved, chronic complications, such as liver disease, have become increasingly apparent in individuals with UCDs. Liver disease in UCDs may be associated with hepatic inflammation, hepatic fibrosis, portal hypertension, liver cancer and even liver failure. However, except for monitoring serum aminotransferases, there are no clear guidelines for screening and/or monitoring individuals with UCDs for liver disease. Thus, we systematically evaluated the potential utility of several non-invasive biomarkers for liver fibrosis in UCDs. METHODS: We evaluated grey-scale ultrasonography, liver stiffness obtained from shear wave elastography (SWE), and various serum biomarkers for hepatic fibrosis and necroinflammation, in a cohort of 28 children and adults with various UCDs. RESULTS: Overall, we demonstrate a high burden of liver disease in our participants with 46% of participants having abnormal grey-scale ultrasound pattern of the liver parenchyma, and 52% of individuals having increased liver stiffness. The analysis of serum biomarkers revealed that 32% of participants had elevated FibroTest™ score, a marker for hepatic fibrosis, and 25% of participants had increased ActiTest™ score, a marker for necroinflammation. Interestingly, liver stiffness did not correlate with ultrasound appearance or FibroTest™. CONCLUSION: Overall, our results demonstrate the high overall burden of liver disease in UCDs and highlights the need for further studies exploring new tools for identifying and monitoring individuals with UCDs who are at risk for this complication. TRIAL REGISTRATION: This study has been registered in ClinicalTrials.gov (NCT03721367).


Argininosuccinate Lyase/blood , Genetic Diseases, Inborn/blood , Liver Cirrhosis/blood , Liver Diseases/blood , Urea Cycle Disorders, Inborn/blood , Adolescent , Adult , Biomarkers/blood , Child , Child, Preschool , Elasticity Imaging Techniques , Female , Genetic Diseases, Inborn/diagnostic imaging , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Humans , Hyperammonemia/blood , Hyperammonemia/genetics , Hyperammonemia/metabolism , Hyperammonemia/pathology , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Diseases/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Metabolism, Inborn Errors/genetics , Middle Aged , Ultrasonography , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/metabolism , Urea Cycle Disorders, Inborn/pathology , Young Adult
11.
Sci Rep ; 11(1): 3580, 2021 02 11.
Article En | MEDLINE | ID: mdl-33574402

The urea cycle protects the central nervous system from ammonia toxicity by converting ammonia to urea. N-acetylglutamate synthase (NAGS) catalyzes formation of N-acetylglutamate, an essential allosteric activator of carbamylphosphate synthetase 1. Enzymatic activity of mammalian NAGS doubles in the presence of L-arginine, but the physiological significance of NAGS activation by L-arginine has been unknown. The NAGS knockout (Nags-/-) mouse is an animal model of inducible hyperammonemia, which develops hyperammonemia without N-carbamylglutamate and L-citrulline supplementation (NCG + Cit). We used adeno associated virus (AAV) based gene transfer to correct NAGS deficiency in the Nags-/- mice, established the dose of the vector needed to rescue Nags-/- mice from hyperammonemia and measured expression levels of Nags mRNA and NAGS protein in the livers of rescued animals. This methodology was used to investigate the effect of L-arginine on ureagenesis in vivo by treating Nags-/- mice with AAV vectors encoding either wild-type or E354A mutant mouse NAGS (mNAGS), which is not activated by L-arginine. The Nags-/- mice expressing E354A mNAGS were viable but had elevated plasma ammonia concentration despite similar levels of the E354A and wild-type mNAGS proteins. The corresponding mutation in human NAGS (NP_694551.1:p.E360D) that abolishes binding and activation by L-arginine was identified in a patient with NAGS deficiency. Our results show that NAGS deficiency can be rescued by gene therapy, and suggest that L-arginine binding to the NAGS enzyme is essential for normal ureagenesis.


Amino-Acid N-Acetyltransferase/genetics , Gene Transfer Techniques , Hyperammonemia/genetics , Urea Cycle Disorders, Inborn/genetics , Amino-Acid N-Acetyltransferase/metabolism , Animals , Arginine/metabolism , Arginine/pharmacology , Citrulline/metabolism , Citrulline/pharmacology , Dependovirus/genetics , Disease Models, Animal , Glutamates/metabolism , Glutamates/pharmacology , Humans , Hyperammonemia/metabolism , Hyperammonemia/pathology , Hyperammonemia/therapy , Mice , Mice, Knockout , Mutant Proteins/genetics , Urea/metabolism , Urea Cycle Disorders, Inborn/metabolism , Urea Cycle Disorders, Inborn/pathology , Urea Cycle Disorders, Inborn/therapy
12.
Mol Genet Metab ; 132(1): 19-26, 2021 01.
Article En | MEDLINE | ID: mdl-33388234

BACKGROUND/AIMS: Neonatal onset Urea cycle disorders (UCDs) can be life threatening with severe hyperammonemia and poor neurological outcomes. Glycerol phenylbutyrate (GPB) is safe and effective in reducing ammonia levels in patients with UCD above 2 months of age. This study assesses safety, ammonia control and pharmacokinetics (PK) of GPB in UCD patients below 2 months of age. METHODS: This was an open-label study in UCD patients aged 0 - 2 months, consisting of an initiation/transition period (1 - 4 days) to GPB, followed by a safety extension period (6 months to 2 years). Patients presenting with a hyperammonemic crisis (HAC) did not initiate GPB until blood ammonia levels decreased to below 100 µmol/L while receiving sodium phenylacetate/sodium benzoate and/or hemodialysis. Ammonia levels, PK analytes and safety were evaluated during transition and monthly during the safety extension for 6 months and every 3 months thereafter. RESULTS: All 16 patients with UCD (median age 0.48 months, range 0.1 to 2.0 months) successfully transitioned to GPB within 3 days. Average plasma ammonia level excluding HAC was 94.3 µmol/L at baseline and 50.4 µmol/L at the end of the transition period (p = 0.21). No patient had a HAC during the transition period. During the safety extension, the majority of patients had controlled ammonia levels, with mean plasma ammonia levels lower during GPB treatment than baseline. Mean glutamine levels remained within normal limits throughout the study. PK analyses indicate that UCD patients <2 months are able to hydrolyze GPB with subsequent absorption of phenylbutyric acid (PBA), metabolism to phenylacetic acid (PAA) and conjugation with glutamine. Plasma concentrations of PBA, PAA, and phenylacetylglutamine (PAGN) were stable during the safety extension phase and mean plasma phenylacetic acid: phenylacetylglutamine ratio remained below 2.5 suggesting no accumulation of GPB. All patients reported at least 1 treatment emergent adverse event with gastroesophageal reflux disease, vomiting, hyperammonemia, diaper dermatitis (37.5% each), diarrhea, upper respiratory tract infection and rash (31.3% each) being the most frequently reported. CONCLUSIONS: This study supports safety and efficacy of GPB in UCD patients aged 0 -2 months who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB undergoes intestinal hydrolysis with no accumulation in this population.


Glycerol/analogs & derivatives , Hyperammonemia/drug therapy , Phenylbutyrates/administration & dosage , Urea Cycle Disorders, Inborn/drug therapy , Age of Onset , Ammonia/blood , Child, Preschool , Female , Glycerol/administration & dosage , Humans , Hyperammonemia/blood , Hyperammonemia/pathology , Infant , Infant, Newborn , Male , Pediatrics , Phenylacetates/administration & dosage , Renal Dialysis , Urea Cycle Disorders, Inborn/blood , Urea Cycle Disorders, Inborn/metabolism , Urea Cycle Disorders, Inborn/pathology
13.
Mol Genet Metab ; 131(4): 390-397, 2020 12.
Article En | MEDLINE | ID: mdl-33288448

OBJECTIVE: The implementation of newborn screening (NBS) programs for citrullinemia type 1 (CTLN1) and argininosuccinic aciduria (ASA) is subject to controversial debate. The aim of this study was to assess the impact of NBS on the metabolic disease course and clinical outcome of affected individuals. METHODS: In 115 individuals with CTLN1 and ASA, we compared the severity of the initial hyperammonemic episode (HAE) and the frequency of (subsequent) HAEs with the mode of diagnosis. Based on a recently established functional disease prediction model, individuals were stratified according to their predicted severe or attenuated phenotype. RESULTS: Individuals with predicted attenuated forms of CTLN1 and ASA were overrepresented in the NBS group, while those with a predicted severe phenotype were underrepresented compared to individuals identified after the manifestation of symptoms (SX). Identification by NBS was associated with reduced severity of the initial HAE both in individuals with predicted severe and attenuated phenotypes, while it was not associated with lower frequency of (subsequent) HAEs. Similar results were obtained when including some patients diagnosed presymptomatically (i.e. prenatal testing, and high-risk family screening) in this analysis. CONCLUSION: Since one of the major challenges of NBS outcome studies is the potential overrepresentation of individuals with predicted attenuated phenotypes in NBS cohorts, severity-adjusted evaluation of screened and unscreened individuals is important to avoid overestimation of the NBS effect. NBS enables the attenuation of the initial HAE but does not affect the frequency of subsequent metabolic decompensations in individuals with CTLN1 and ASA. Future long-term studies will need to evaluate the clinical impact of this finding, especially with regard to mortality, as well as cognitive outcome and quality of life of survivors.


Argininosuccinic Aciduria/diagnosis , Citrullinemia/diagnosis , Metabolic Diseases/genetics , Urea Cycle Disorders, Inborn/diagnosis , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/metabolism , Argininosuccinic Aciduria/pathology , Citrullinemia/genetics , Citrullinemia/metabolism , Citrullinemia/pathology , Female , Humans , Hyperammonemia/diagnosis , Hyperammonemia/genetics , Hyperammonemia/metabolism , Hyperammonemia/pathology , Infant, Newborn , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Neonatal Screening , Quality of Life , Severity of Illness Index , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/metabolism , Urea Cycle Disorders, Inborn/pathology
14.
Biomed Res Int ; 2020: 5690915, 2020.
Article En | MEDLINE | ID: mdl-32934962

During Jan. 2016-Dec. 2019, nine Chinese patients from eight unrelated families were diagnosed with neonatal-onset UCDs by targeted panel sequencing or whole-exome sequencing (WES). Their clinical manifestations, biochemical features, 180-day-age outcomes, and molecular genetic characteristics were reviewed retrospectively. NGS-based tests revealed 7 patients diagnosed with ornithine transcarbamylase deficiency (OTCD) and 2 with carbamoylphosphate synthetase I deficiency (CPS1D). The spectrum of the clinical presentation of nine affected individuals progressed from unspecific symptoms like poor feeding to somnolence, coma, and death. All patients presented with an acute hyperammonemia. The most robust metabolic pattern in OTCD was hyperglutaminemic hyperammonemia with high concentration of urine orotic acid, and it was reported in six patients. Of ten variants found on the OTC gene and CPS1 gene, 3 were novel: (c.176T>C (p.L59P)) in the OTC gene, c.2938G>A (p.G980S) and c.3734T>A (p.L1245H) in the CPS1 gene. There was a high mortality rate of 77.78% (7/9) for all the defects combined. An OTC-deficient male and a CPS1-deficient female survived from episodes of hyperammonemia. Although prompt recognition of UCD and the use of alternative pathway therapy in addition to provision of appropriate nutrition and dialysis improved survival, the overall outcomes for the neonatal-onset type are poor in China.


Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Hyperammonemia/genetics , Ornithine Carbamoyltransferase/genetics , Urea Cycle Disorders, Inborn/genetics , Age of Onset , China , Female , High-Throughput Nucleotide Sequencing , Humans , Hyperammonemia/complications , Hyperammonemia/metabolism , Hyperammonemia/pathology , Infant, Newborn , Male , Metabolomics/methods , Mutation/genetics , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/metabolism , Ornithine Carbamoyltransferase Deficiency Disease/pathology , Urea Cycle Disorders, Inborn/complications , Urea Cycle Disorders, Inborn/metabolism , Urea Cycle Disorders, Inborn/pathology , Exome Sequencing
15.
Neurochem Int ; 140: 104809, 2020 11.
Article En | MEDLINE | ID: mdl-32758585

Elevated blood ammonia (hyperammonemia) is believed to be a major contributor to the neurological sequelae following severe liver disease. Ammonia is cleared via two main mechanisms, the urea cycle pathway and the glutamine synthetase reaction. Recent studies of genetically modified animals confirm the importance of the urea cycle, but also suggest that the glutamine synthetase reaction is more important than previously recognized. While the liver clears about two-thirds of the body's ammonia via the combined action of the urea cycle and glutamine synthetase, extrahepatic tissues do not express all the components required for performing a complete urea cycle and therefore depend on the glutamine synthetase reaction for ammonia clearance. The brain is particularly vulnerable to the effects of hyperammonemia, which include impaired extracellular potassium buffering and brain edema. Moreover, the glutamine synthetase reaction is intimately linked to the metabolism of the excitatory and inhibitory neurotransmitters glutamate and gamma aminobutyric acid (GABA), implicating a key role for this enzyme in neurotransmission. This review discusses the emerging roles of glutamine synthetase in brain pathophysiology, particularly aspects related to ammonia homeostasis and hepatic encephalopathy.


Ammonia/metabolism , Brain/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamine/metabolism , Homeostasis/physiology , Animals , Brain/pathology , Brain Diseases/metabolism , Brain Diseases/pathology , Glutamic Acid/metabolism , Humans , Hyperammonemia/metabolism , Hyperammonemia/pathology , Liver/metabolism , Liver/pathology
16.
J Pediatr Endocrinol Metab ; 33(10): 1349-1352, 2020 Aug 18.
Article En | MEDLINE | ID: mdl-32809955

Objectives Carbonic anhydrase VA (CAVA) deficiency is a rare autosomal recessive inborn error of metabolism that leads to acute metabolic crises, especially in the neonatal or infantile period. It is caused by a deficiency of the enzyme CAVA, which is encoded by the CA5A gene. Case presentation Fifteen patients with homozygous pathogenic CA5A mutations involving 10 different lesions have been reported in the literature up to date. Main clinical and biochemical features of CAVA deficiency include lethargy, hyperammonemic encephalopathy, metabolic acidosis, elevated lactate and hypoglycemia. In most patients reported so far, a single metabolic decompensation attack has been reported, and they have remained stable thereafter with no further crisis. Conclusions We report the 16th case of CAVA deficiency, who was diagnosed by whole-exome sequencing and showed a typical course of the disease with normal development at 18 months.


Brain Diseases/pathology , Carbonic Anhydrase V/deficiency , Carbonic Anhydrase V/genetics , Hyperammonemia/pathology , Mutation , Brain Diseases/enzymology , Brain Diseases/genetics , Female , Humans , Hyperammonemia/enzymology , Hyperammonemia/genetics , Infant, Newborn , Prognosis
18.
J Pediatr Endocrinol Metab ; 33(4): 569-574, 2020 Apr 28.
Article En | MEDLINE | ID: mdl-32145058

Pyruvate carboxylase (PC) deficiency is a rare autosomal recessive disease and provides clinics in three essential phenotypes. Type B PC deficiency is characterized by lactic acidosis and hyperammonemia. We report a Turkish patient who was diagnosed with type B PC deficiency. Despite the application of anaplerotic treatment with biotin, citrate and arginine-aspartate, continuous veno-venous hemodialysis (CVVHD) treatments were applied due to the failure to keep hyperammonemia and lactic acidosis under control. Ammonia values increasing to 860 µmol/L were observed. A homozygous novel variant was detected in PC gene analyses containing a 12-base pair deletion on exon 8. Although the mutation found was not reported previously, it was accepted as a pathogenic variant due to its presence in a functional region of the protein. In type B PC deficiency, although a high level of ammonia is expected, it rarely exceeds 200 µmol/L. As far as we know, the present case has the highest ammonia values in the literature. This paper has been shared to highlight to keep PC deficiency in mind regarding the differential diagnosis of hyperammonemia, particularly in the presence of lactic acidosis, and to serve as a model for the use of different modalities in the management process of PC deficiency.


Brain Diseases, Metabolic/drug therapy , Hyperammonemia/drug therapy , Mutation , Pyruvate Carboxylase Deficiency Disease/complications , Pyruvate Carboxylase/genetics , Brain Diseases, Metabolic/etiology , Brain Diseases, Metabolic/pathology , Disease Management , Humans , Hyperammonemia/etiology , Hyperammonemia/pathology , Infant, Newborn , Male , Nutritional Support , Prognosis , Pyruvate Carboxylase/metabolism , Renal Dialysis
19.
Metab Brain Dis ; 35(4): 559-578, 2020 04.
Article En | MEDLINE | ID: mdl-32146658

Hepatic encephalopathy (HE) may occur in patients with liver failure. The most critical pathophysiologic mechanism of HE is cerebral edema following systemic hyperammonemia. The dysfunctional liver cannot eliminate circulatory ammonia, so its plasma and brain levels rise sharply. Astrocytes, the only cells that are responsible for ammonia detoxification in the brain, are dynamic cells with unique phenotypic properties that enable them to respond to small changes in their environment. Any pathological changes in astrocytes may cause neurological disturbances such as HE. Astrocyte swelling is the leading cause of cerebral edema, which may cause brain herniation and death by increasing intracranial pressure. Various factors may have a role in astrocyte swelling. However, the exact molecular mechanism of astrocyte swelling is not fully understood. This article discusses the possible mechanisms of astrocyte swelling which related to hyperammonia, including the possible roles of molecules like glutamine, lactate, aquaporin-4 water channel, 18 KDa translocator protein, glial fibrillary acidic protein, alanine, glutathione, toll-like receptor 4, epidermal growth factor receptor, glutamate, and manganese, as well as inflammation, oxidative stress, mitochondrial permeability transition, ATP depletion, and astrocyte senescence. All these agents and factors may be targeted in therapeutic approaches to HE.


Astrocytes/metabolism , Brain Edema/metabolism , Hepatic Encephalopathy/metabolism , Hyperammonemia/metabolism , Ammonia/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Brain Edema/pathology , Cell Size , Hepatic Encephalopathy/pathology , Humans , Hyperammonemia/pathology , Oxidative Stress/physiology
20.
Blood Purif ; 49(3): 382-384, 2020.
Article En | MEDLINE | ID: mdl-31910419

We describe a 9-year-old boy with acute liver failure of unknown etiology, unresponsive to standard medical therapy, with increasing hyperammonemia blood level, lactate elevation, a pediatric end liver stage of 20, a hepatic encephalopathy (HE) score of 2, and scheduled for emergent liver transplantation on the waiting list. We admitted him in the pediatric intensive care unit and managed him in the early stages with continuous renal replacement therapy and therapeutic plasma exchange as soon as neurologic impairment started to worsen. He recovered from his HE after 3 days of blood purification and was removed from the transplantation waiting list due to progressive liver function improvement.


Hybrid Renal Replacement Therapy , Liver Failure, Acute/therapy , Liver/pathology , Child , Hepatic Encephalopathy/complications , Hepatic Encephalopathy/pathology , Hepatic Encephalopathy/therapy , Humans , Hybrid Renal Replacement Therapy/methods , Hyperammonemia/complications , Hyperammonemia/pathology , Hyperammonemia/therapy , Liver Failure, Acute/complications , Liver Failure, Acute/pathology , Male , Plasma Exchange/methods
...